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Abstract Multiphase flow computations involve coupled momentum, mass and energy transfer
between moving and irregularly shaped boundaries, large property jumps between materials, and
computational stiffness. In this study, we focus on the immersed boundary technique, which is a
combined Eulerian-Lagrangian method, to investigate the performance improvement using the
multigrid technique in the context of the projection method. The main emphasis is on the interplay
between the multigrid computation and the effect of the density and viscosity ratios between
phases. Two problems, namely, a rising bubble in a liquid medium and impact dynamics between a
liquid drop and a solid surface are adopted. As the density ratio increases, the single grid
computation becomes substantially more time-consuming; with the present problems, an increase
of factor 10 in density ratio results in approximately a three-fold increase in CPU time. Overall, the
multigrid technique speeds up the computation and furthermore, the impact of the density ratio on
the CPU time required is substantially reduced. On the other hand, the impact of the viscosity ratio
does not play a major role on the convergence rates.
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Nomenclature
C ¼ curve representing the interface
D ¼ diameter of computational

cylinder
d ¼ diameter of the bubble/drop
dp ¼ 2h, twice the grid spacing
Fp ¼ surface tension force
Fr ¼ Froude number
g ¼ gravitational acceleration
H ¼ height of the computational

cylinder
h ¼ grid spacing
n̂ ¼ unit normal vector
p ¼ pressure
Re ¼ Reynolds number

S ¼ source term in momentum
equation

s ¼ arclength of interface
t ¼ time
U ¼ face-centered velocity vector
u ¼ cell-centered velocity vector
Vp ¼ interface velocity vector
x ¼ grid coordinate
xk ¼ marker coordinate

Greek symbols
D ¼ incremental difference
H ¼ Heaviside function
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Introduction
Multiphase flow computations involve several challenging issues. For example,
the momentum, mass and energy transfer between phases are coupled. When
the interface moves, one needs to compute the domain shape and associated
geometric information, such as curvature, normal and projected area/volume,
as part of the solution, which adds nonlinearity to the problem, and can create
difficulties in grid generation. Oftentimes, there are large property jumps
across the interface, e.g. the density ratio between vapor and water under
standard sea level conditions is around 1,000, which results in multiple time
and length scales and computational stiffness. To deal with these issues,
numerous numerical techniques have been developed, each with its own merits
and difficulties. There are three categories: Lagrangian, Eulerian and combined
Eulerian-Lagrangian methods, which are reviewed by Shyy et al. (1996, 2001).

In this study, we focus on the combined Eulerian-Lagrangian method.
Specifically, the immersed boundary technique (Francois, 2002; Francois and
Shyy, 2002; Peskin, 1977, 2002; Shyy et al., 2001; Tryggvason et al., 2001;
Udaykumar et al., 1997) is used. In particular, we investigate the performance
improvement using the multigrid technique (Brandt, 1977; Briggs, 2000; Shyy,
1994) in the context of the projection method (Francois, 2002; Ye et al., 1999).
The present approach tracks the interface with the Lagrangian method using
massless markers, while the field equation computations are carried out with
the Eulerian method on fixed, Cartesian meshes.

In the fractional step method, the Poisson pressure equation is responsible
for the majority of the computational cost. As detailed by Shyy (1994), the
pressure equation, which is a diffusion-type for low speed flows, exhibits
slower convergence rates than the convective-diffusive ones when employing
iterative matrix solvers. Therefore, improvement on the solver of the Poisson
equation can accelerate the overall performance of the immersed boundary
method. In this work, we investigate the multigrid technique. Although the
multigrid method is well established for many single-phase fluid flow problems
(Hackbusch, 1980; Luchini and Dalascio, 1994; McCormick, 1987; Shyy, 1994),
its application to moving boundary problems is not widely reported

d ¼ Dirac-delta function
k ¼ interface curvature
m ¼ dynamic viscosity
r ¼ density
s ¼ surface tension
f ¼ any field variable
v ¼ interpolation weight

Superscripts
g ¼ grid level
m ¼ space dimension

n ¼ time indices
* ¼ intermediate time level

Subscripts
1 ¼ fluid 1
2 ¼ fluid 2
e,w,n,s ¼ face cell points in east, west, north

and south respectively
cc ¼ cell-centered
fc ¼ face-centered
G ¼ finest grid level
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(Udaykumar et al., 2001). The inclusion of the immersed boundary in the flow
field for two-phase flows changes the characteristics of the coefficient matrix.
The property jump between phases also alters the convergence behavior. In
this study, we assess the interplay between the multigrid computation, the
moving boundary separating two fluids, and the effect of the property ratios
between phases. Two problems, one involving a rising bubble in a liquid
medium and the other a liquid drop impinging on a solid surface, serve as test
cases to evaluate the multigrid performance. The density and viscosity are
varied to offer ranges of property jumps between phases. The problems studied
are axisymmetric, with constant properties within each phase.

Numerical approach
The governing equations of mass and momentum conservation for the
unsteady, viscous, incompressible flow field (in each material) are given in
equations (1) and (2), respectively.

7 ·u ¼ 0 ð1Þ

›ru

›t
þ 7 · ruu ¼ 27pþ

1

Re
7 · ðm7uÞ þ

1

We

Z
CðtÞ

skn̂dðx2 xkÞ ds

þ
1

Fr
rg ð2Þ

The projection method (Chorin, 1968; Francois, 2002; Ye et al., 1999) is used to
solve the above equations. It consists of splitting the solution procedure into
two distinct steps. In the first step, the momentum equation without the
pressure term is solved for an intermediate solution of the velocity field as
shown in equation (3), which is derived on a cell-centered, collocated grid
arrangement, between the primary dependent variables and the mass
and momentum fluxes, using the second order Adams-Bashforth scheme for
the convection term and the Crank-Nicolson scheme for the viscous term
(Ye et al., 1999).

ru*2run

Dt
þ
1

2
½37 ·rUnun27 ·rUn21un21� ¼

1

2Re
½m72unþm72u*�þS ð3Þ

where U is the face-centered velocity, u is the cell-centered velocity and S is
the source term that contains the gravitational and surface tension body
forces.

For the second step, the following Poisson equation for pressure is derived
and solved.

7 ·
1

r
7pnþ1

� �
¼

1

Dt
7 ·U* ð4Þ
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Once the pressure is obtained, the velocity field values are corrected according
to equations (5) and (6).

unþ1 ¼ u* 2 Dt
1

r
7pnþ1

� �
cc

ð5Þ

Unþ1 ¼ U* 2 Dt
1

r
7pnþ1

� �
fc

ð6Þ

In the immersed boundary method, the material properties are assigned with
the aid of the discrete Heaviside step function, demonstrated in equations (7)
and (8), so that the underlying solver does not encounter discontinuities across
the interface.

r ¼ r2H ðx2 xkÞ þ r1ð12 H ðx2 xkÞÞ ð7Þ

m ¼ m2H ðx2 xkÞ þ m1ð12 H ðx2 xkÞÞ ð8Þ

where the discrete Heaviside step function H is defined as follows:

H ðx2xkÞ¼

Ydim
m¼1

1

2
1þ

xm2 ðxmÞk

dp
þ

1

p
sin

pðxm2 ðxmÞkÞ

dp

� �
if jx2xkj# dp

1 if x2xk.þdp

0 if x2xk,2dp

8>>>>>>><
>>>>>>>:

ð9Þ

where dim is the space dimension, dp ¼ 2h with h being the grid spacing, x is
the grid coordinate, and xk is the interfacial marker coordinate.

The interface force acting on the marker points is spread to the nearby grid
points using the discrete Delta function, defined as follows

dðx2xkÞ ¼

Ydim
m¼1

1

2dp
1þ cos

pðxm 2 ðxmÞkÞ

dp

� �
if jx2xkj# dp

0 otherwise

8>><
>>:

ð10Þ

The surface force is incorporated into the field equation in the form of the body
force based on the following formula:
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Fp ¼
k

X
skkn̂kdðx2 xkÞDsk ð11Þ

Including the above term as a source term in the momentum equation means
that the surface effects, instead of being applicable at the zero thickness
interface, now spreads over a circle of radius 2h around the cell center, as
shown in Figure 1.

The interface velocity is obtained for each marker (Figure 1) with the help of
the interfacial continuity condition and it is calculated by using equation (12).

Vp ¼
ij

X
uijdðx2 xkÞh

2 ð12Þ

Equations (3) and (4) are discretized using the finite-volume technique. The
final discrete form of the advection-diffusion and pressure equations (equations
(3) and (4), respectively) are cast into the following generalized form:

apfp ¼ aefe þ awfw þ anfn þ asfs þ b ð13Þ

which results in a five-point stencil. In matrix form, equation (13) reads:

½A� {f} ¼ {B} ð14Þ

where [A ] is a pentadiagonal coefficient matrix, {B} is the source vector and
{f} is the solution vector. Equation (14) is solved here iteratively using the line
successive over relaxation (LSOR) method (Press et al., 1992) that decomposes
the system into two tri-diagonal matrices, which are then solved using the
Thomas algorithm.

As already mentioned and discussed by Shyy (1994), for the discretized
advection-diffusion equation, the convergence rate of equation (14) is fast such
that the residual can be reduced to an acceptable level typically within a few
iterations. However, the pressure Poisson equation has a slower convergence
rate than the advection-diffusion equation. In fact, the convergence rate can be
further reduced with the inclusion of the immersed body where the fluid
properties, especially the density, change abruptly. The density jump within a
few cells around the interface directly modifies the terms in the coefficient
matrix of equation (14). Furthermore, equation (14) is observed to be sensitive
to the density ratio of the fluids, as discussed in the next section.

Figure 1.
Marker points considered
for the estimation of the
force at point P and grid
points considered for the
interface velocity around
the marker X
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The multigrid technique works on the principle that high wave number
components decay faster than low wave number components. A component’s
wave number is considered high or low depending on the grid size. This
dependence is such that low wave number components on a fine mesh behave
like high wave number components on a coarse mesh as demonstrated by Ghia
et al. (1982) and Shyy (1994). Therefore, treating the various wave number
components on different grids makes it possible to accelerate the convergence
rate. The multigrid procedure adopted in this work is based on a conventional
W-cycle, similar to the procedure of Udaykumar et al. (2001), which is
summarized below.

Consider a sequence of g¼ 1,. . .,G grids, where the grid spacing hg21 on
grid g 2 1 is twice that of the grid spacing on the grid level g. Equation (14) can
be cast into the following form:

½A�G{f}G ¼ {B}G ð15Þ

where [A ]G is the coefficient matrix, {f}G is the solution vector and G is the
source vector on grid G, the finest grid level. The final converged solution is
obtained on the finest grid, however all the computations are not carried out on
this grid.

The first step is to carry out a few computations on the finest grid g¼ G,
which results in:

½A�g{f}g 2 {B}g ¼ {R}g ð16Þ

where {R}g is the residual vector. The residuals are then transferred to the next
coarser grid via the restriction operator:

{R}gg21 ¼
M

X
ð{R}M Þg ð17Þ

where M denotes the four surrounding points on the fine grid. The following
system is then solved on the coarser grid:

½A�g21{f}g21 ¼ 2{R}gg21 ð18Þ

The solution vector is then transferred by the prolongation operator to the fine
grid:

{f}g21
g ¼

M

X
vM ð{f}M Þg21 ð19Þ

whereM in this case denotes the four surrounding point on the coarse grid and
vM denotes the interpolation weights. This process is scheduled and the final
solution is obtained as
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{f}G ¼ {f}g þ {f}g21
g ð20Þ

The multigrid technique, described earlier, is employed to solve the pressure
Poisson equation (4). In the following section, we present a performance analysis
of the multigrid method applied to two-phase flows: the first case being a rising
bubble and the second an impinging droplet on a flat surface.

Results and discussion
Rising bubble in a viscous liquid
This study extends the work presented by Francois (2002) for the rising bubble
in a viscous fluid. The same configuration is used for validation purposes and
is shown in Figure 2.

A spherical bubble of diameter d, fluid 2, is placed in a close cylinder of
diameter D¼ 5d and heightH ¼ 10d, full of denser fluid, fluid 1. The buoyancy
force drives the bubble to rise inside the cylinder. No-slip boundary condition is
applied on the wall of the cylinder. The flow conditions, defined by the
dimensionless parameters, determine the shape and location of the bubble.

Figure 2.
Schematic of the
computational setup for
a single bubble rising by
buoyancy
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These dimensionless parameters, which include Reynolds (Re), Weber (We) and
Froude (Fr) numbers, are based on the properties of fluid 1 as given in
equations (21)-(23).

Re ¼
r1Ud

m1
ð21Þ

We ¼
r1U

2d

s
ð22Þ

Fr ¼
U 2

gd
ð23Þ

where U is the characteristic speed, r1 and m1 are the density and viscosity,
respectively, of fluid 1, s is the surface tension and g is the gravitational
acceleration. The characteristic speed is calculated by using equation (24) and
set to one for the cases considered.

U ¼
ffiffiffiffiffi
gd

p
ð24Þ

In all cases, the computational domain consists of a 202£42 grid, distributed
non-uniformly. Figures 3 and 4 show the typical bubble shapes in time for
different density and viscosity ratios. The initial bubble starts to rise due to the
effect of buoyancy in the cylinder and it eventually deforms to a steady-state
shape. For a detail presentation and discussion of the physical results, we refer
to Francois (2002).

Figure 5 shows the number of fine grid iterations required to reach a residual
level of 1 £ 1026 at the very first time step, which requires the largest number
of iterations to converge among all time steps since it starts to iterate from the
initial conditions. One level represents the iteration history for a single grid
computation. As demonstrated, the convergence rate improves dramatically
when the level of multigrid is increased.

Figure 6 shows the convergence history at a later time instant, t ¼ 500Dt for
a density ratio of ten. While the single grid computation requires substantially
fewer fine grid iterations at the later stage than initially, the multigrid
technique still exhibits noticeable improvement. With a higher ratio, 100, as
shown in Figures 7 and 8, one can see that a larger number of iterations is
required as the density ratio increases. The multigrid significantly accelerates
the convergence rate for both density ratios.

The number of fine grid iterations required throughout the course of
computation is shown in Figures 9-11 for density ratios of 10 and 100 for single
grid, two and three level grids, respectively. The number of fine grid iterations
required at each time step is averaged for each case. As the density ratio
increases, the number of iterations required to reach the same residual level
also increases.
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Figure 12 summarizes the performance of the multigrid technique with the
viscosity ratio of ten and three density ratios. The single grid computation
with the density ratio of ten is used as the reference, whose CPU time is
assigned as unity. Single- and multi-grid computations are based on the
same time step size and with the identical number of time steps. The CPU
time for all other cases is normalized by the density ratio of ten and
computed with single grid. Clearly, as the density ratio increases, the single
grid computation becomes substantially more time-consuming; for the
present case, an increase of factor ten in density ratio results in
approximately a three-fold increase in CPU time. Employing two and
three level grids decreases the CPU time for each density ratio. Furthermore,
the efficiency of the multigrid performance is more pronounced for larger
density ratio.

Figures 13 and 14 present the effect of viscosity ratio on the performance of
the multigrid technique. In Figure 13, the density ratio is held at ten while in
Figure 14, it is held at 100. Again, the multigrid technique improves the
convergence rate for all cases. It is worth noting that the effect of viscosity ratio

Figure 3.
Instantaneous bubble
shapes at time t ¼ 0, 0.3,
0.5, 0.7, 0.9, 1.1, 1.3, 1.5
for Re ¼ 100, We ¼ 4
and Fr ¼ 1 for density
ratio of 10, 100 at a fixed
viscosity ratio of 1
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Figure 5.
Fine grid iteration

history at t ¼ Dt for
three levels at a fixed
density ratio of ten for
the rising bubble case

Figure 4.
Instantaneous bubble

shapes at time t ¼ 0, 0.3,
0.5, 0.7, 0.9, 1.1, 1.3, 1.5
for Re ¼ 100, We ¼ 4

and Fr ¼ 1 for viscosity
ratio of 10, 100 at a fixed

density ratio of ten
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on convergence rates is negligible. On the other hand, the multigrid
improvement is greater for the higher density ratio cases.

Case II: impact of a droplet
The second problem considered is that of a liquid drop impinging on a flat,
solid surface. The schematic is shown in Figure 15.

Figure 6.
Fine grid iteration
history at t ¼ 500Dt for
three levels at a fixed
density ratio of ten for
the rising bubble case

Figure 7.
Fine grid iteration
history at t ¼ Dt for
three levels at a fixed
density ratio of 100 for
the rising bubble case
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For this problem, in addition to the abovementioned dimensionless parameters
(Re, We and Fr, based on fluid 2), the contact angle is another parameter
influencing the dynamics. In this study, we extend the work of Francois (2002)
and consider a case with Re ¼ 100, We ¼ 4, Fr ¼ 1 and a static contact angle
of 608. The droplet is initially a sphere and the impact velocity is set to be one.

Figure 8.
Fine grid iteration

history at t ¼ 500Dt for
three levels at a fixed

density ratio of 100 for
the rising bubble case

Figure 9.
Total number of fine grid

iterations for density
ratios of 10 and 100 for
single grid computation
for the rising bubble case
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The domain is a cylinder with a diameter of D ¼ 5d and a height of H ¼ 5d,
and in all computations, the grid system is 152 £ 82 for all cases, distributed
non-uniformly.

Figure 16 shows snapshots from the simulation to illustrate the shape
deformation of the droplet after the impact under the given conditions
(Francois, 2002).

Figure 10.
Total number of fine grid
iterations for density
ratios of 10 and 100 with
a two-level multigrid
method for the rising
bubble case

Figure 11.
Total number of fine grid
iterations for density
ratios of 10 and 100 with
a three-level multigrid
method for the rising
bubble case
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Figure 12.
Effect of viscosity on
performance for the
rising bubble case

Figure 13.
Effect of viscosity on
performance for rising

bubble case
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Figure 14.
Effect of viscosity on
performance for rising
bubble case

Figure 15.
Schematic of the
computational setup for
the impact of a droplet
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Figure 17 presents the CPU time summary for two density ratios, between the
liquid drop and ambient gas, while fixing the viscosity ratio to be ten.
Comparing Figures 12 and 17, the drop impact and rising bubble cases exhibit
very similar behaviors in terms of the influence of the density ratio and
contribution of the multigrid technique.

Summary and conclusion
In this study, we examine the interplay between the multigrid computation of
the pressure Poisson equation with the focus on the moving boundary
separating two fluids, and the effect of the density and viscosity ratios between
phases. Two flow problems, one involving a rising bubble in a liquid medium

Figure 16.
Impact of a droplet for a

density ratio of 100
(Re ¼ 100, We ¼ 4 and

Fr ¼ 1 with a static
contact angle of 608

Figure 17.
Effect of density on

performance for the drop
impact case

Multigrid
computations

113



and the other a liquid drop impinging on a solid surface, are adopted. It is
demonstrated that as the density ratio increases, the single grid computation
requires an enormous amount of CPU time because of the increase in stiffness
of the system. For the grid size and flow problems considered, an increase of
factor ten in density ratio results in approximately a three-fold increase in CPU
time. The multigrid computation substantially improves convergence rate
independent of the density ratio value. Comparing Figures 12 and 17, the
impinging drop case and rising bubble cases exhibit similar behaviors in terms
of the influence of the density ratio and contribution of the multigrid technique.
Finally, the effect of viscosity ratio on the convergence rate of the pressure
Poisson equation does not play a major role.
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